
J. Fluid Mech. (1999), vol. 399, pp. 301–318. Printed in the United Kingdom

c© 1999 Cambridge University Press

301

The production of subharmonic waves in
the nonlinear evolution of wavepackets
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The nonlinear evolution of wavepackets in a laminar boundary layer has been
studied experimentally. The packets were generated by acoustic excitations injected
into the boundary layer through a small hole in the plate. Various packets with
different phases relative to the envelope were studied. It was found that for all the
packets the nonlinearity involved the appearance of oblique modes of frequency
close to the subharmonic of the dominant two-dimensional wave. Moreover, the
results confirmed that the phase had a strong influence on the strength of the
nonlinear interaction. The experimental observations also indicated that although a
subharmonic resonance appeared to be present in the process, it alone could not
explain the nonlinear behaviour. The experiment demonstrated that the process must
also involve a mechanism that generates oblique waves of frequency lower than the
Tollmien–Schlichting band.

1. Introduction
Laminar–turbulent transition is an active area of research in fluid dynamics. In

particular, the evolution of wavepackets in a laminar flat-plate boundary layer have
been studied. This type of oscillation has been shown to evolve in a manner similar
to that of naturally occurring waves (Gaster 1978a; Shaikh 1993), and therefore is
of significant practical interest. Often the wavepackets studied are generated from a
pulse excitation, but other types can also be generated. In Medeiros & Gaster (1999)
the evolution of different types of wavepacket was studied experimentally. There the
problem was introduced by the comparison of the evolution of two wavepackets
formed respectively from a positive and a negative short-duration acoustic pulse.
The experimental observations showed that the nonlinear behaviour of the packets
is strongly influenced by the sign of the excitation. It had been suggested previously
(Y. S. Kachanov 1994 and A. Seifert 1995, personal communications) that this
somewhat surprising behaviour arose because disturbances of opposite sign produce
different nonlinear effects close to the excitation source and that this would explain
the observed downstream behaviour. However, the experimental results discussed in
Medeiros & Gaster (1999) have shown that this is not the case. A natural extension
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to the simple positive and negative pulse excitations can be found by treating the
amplitude of the pulse as a complex quantity. This form of excitation includes
the positive and negative pulse, but also enables one to consider the more generic
forms. As was shown in Medeiros & Gaster (1999) the wavepackets created by these
generalized pulses contain wavetrains of different phases embedded within the same
envelope when the amplitude magnitudes are small, but which are quite different in
the nonlinear regime. These results suggested that the phenomenon was linked to the
phase of the packet relative to the envelope, but no explanation for this interesting
behaviour has so far been given.

In other experiments with wavepackets (Gaster & Grant 1975; Cohen, Breuer
& Haritonidis 1991), as well as in some numerical simulations (Konzelmann 1990)
the appearance of oblique modes marked the onset of the nonlinear regime. In
some of these studies the phenomenon was attributed to some type of subharmonic
resonance. In those studies, however, only packets generated from a positive pulse
were considered. The subharmonic resonance is sensitive to the relative phase of the
resonant modes (Monkewitz 1988), and thus perhaps could offer an explanation as to
why the phase of the ripples affects the evolution of a packet. In Medeiros & Gaster
(1999) the measurements that were discussed were restricted to the centreline of the
flow, and it seemed that more comprehensive experiments were necessary to shed
further light on the problem. Here measurements were taken at a number of spanwise
positions in order to compose a three-dimensional view of the wave structure. To
provide an extension to the previous work, the new experiments were carried out at
the same experimental conditions.

The results confirmed the dominant influence of the phase of the ripples within
the packet envelope on the evolution of the packet downstream. The appearance
of oblique modes was a common feature of the different packets when nonlinear-
ity became evident. These modes had frequencies close to the subharmonic of the
Tollmien–Schlichting waves within the packet. New experiments to be discussed here
were specially designed to provide suitable data for showing whether or not there was a
subharmonic resonance. The deterministic resonant mechanism can only be triggered
by an appropriate low-frequency seed. These experiments show that, if a resonant
mechanism is present, the seed is not directly connected to the controlled excitation.

2. Experimental observations
The experimental set up and procedures were the same as those used in Medeiros

& Gaster (1999), with the exception that here a number of spanwise measuring
stations were covered. The experiment was totally controlled by the computer and
took some 80 hours of continuous operation of the tunnel. In such a long experiment
the variation of environmental conditions may cause serious problems because the
viscosity of the air is very sensitive to both temperature and pressure. For instance,
a variation of 1 ◦C in the temperature corresponds to variations of order 1% in
the Reynolds number, which in some circumstances are unacceptable. In the current
series of experiments great care was taken to ensure that this variation was kept to a
minimum by controlling the laboratory temperature. Despite all efforts, the variation
of R was still about ±2% (Medeiros 1996). Fortunately this did not seem to have
any substantial influence on the data.

An overall view of the development of the wavepackets is given in figure 1. Each
contour plot was constructed from hot-wire records taken at 41 different spanwise
stations, separated from each other by 1 cm. The measurements thus covered the entire
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Figure 1. Comparison of the evolution of the positive and the negative wavepackets on a time-span
plane shown by contour plots of the streamwise velocity fluctuation non-dimensionalized by the
free-stream velocity. The measurements were taken at y = 0.6δ∗. To is the time delay between the
excitation and the beginning of the interval ∆T .

width of the packet. The observations indicated that the nonlinearity was substantially
stronger inside the boundary layer than outside. The records shown here were taken
at y/δ∗ = 0.6, which is close to the peak of the Tollmien–Schlichting eigenfunction.
The view represents a time history of the velocity fluctuations as the packet passed
through a fixed streamwise location and must not be taken as a spatial picture of the
flow at some time instant. The wave fronts are in the form of crescents which increase
in spanwise extent as the disturbance progresses downstream.
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Figure 2. For caption see facing page.

Initially the wave crests of the packets are smooth, both for the packet originated
from a positive pulse (here called positive packet) and the packet from the negative
pulse (the negative packet). As the nonlinearity develops, distortions arise and the
wave fronts become warped, but even at the last streamwise measuring station the
crests of the negative packet are still comparatively smooth. The three-dimensional
structure that is observed in the nonlinear regime is similar for packets of different
phases relative to the envelope, figure 2, but clearly the strength of the nonlinear
interaction was dependent on the phase of the packet.



Subharmonic wave production in wavepacket evolution 305
36

 c
m

∆T = 0.066 s –5 –1 1 5 (×10–4)

x =1.3 m, To = 0.1340 s Phase

135°

90°

45°

0°

–45°

–90°

–135°

–180°

x =1.2 m, To = 0.1211 s

Figure 2. Variation of the nonlinear behaviour with the wavepacket phase on a time-span plane
shown by contour plots of the streamwise velocity fluctuation non-dimensionalized by the free-stream
velocity. The measurements were taken at y = 0.6δ∗.

A more definitive view concerning the nature of the warped crests observed in the
nonlinear regime of the disturbance can be obtained in the Fourier domain. Figure 3
displays power spectra of the signals in the non-dimensional frequency(β)× spanwise
wavenumber(αz) plane. Initially the energy is concentrated at β= 0.1, which corre-
sponds to the linearly most amplified waves. In the linear regime, the wave crests of
the packets are smooth and the spanwise wavenumbers concentrate around zero. In
the late stages of the development of the positive packet there is a sharp increase in
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Figure 3. Comparison of the evolution of the positive and the negative wavepackets in the frequency
(β = 2πfδ∗/U∞) × spanwise wavenumber (αz = 2πδ∗/λz) plane, where f is the dimensional
frequency and λz is the dimensional spanwise wavelength. The plots show the relative magnitude.
Measurements taken at y = 0.6δ∗.

the energy of modes with frequencies lower than the Tollmien–Schlichting band and
non-zero spanwise wavenumber. As occurs with nonlinear plane regular wavetrains,
the nonlinear regime of the wavepacket is associated with the appearance of oblique
waves. In the Fourier domain the difference in the evolution of the positive and the
negative wavepackets is more clearly seen. The dependence of the results on the phase
of the packet is shown in figure 4. It is observed that the spanwise wavenumber of
the oblique waves is roughly the same for all the nonlinear packets. For the exper-
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imental conditions used, the phase −135◦ appeared to be the most resistant to the
nonlinear mechanism. Indeed for this phase very little energy is detected outside the
Tollmien–Schlichting band even at the last streamwise station.

3. Some theoretical considerations
The first impression that arises from figure 3 is that the nonlinear interaction is

associated with the appearance of subharmonic oblique waves, which has also been
observed in nonlinear regular plane wavetrains and led to the development of a
number of theories. Among these theories two were particularly successful, namely,
the three-wave resonance proposed by Craik (1971) and the secondary instability
developed by Herbert (1988). They do not take into account the modulation of the
wave, but show good agreement with experiments on plane regular wavetrains (Corke
& Mangano 1989). A brief review of them is presented here; details can be found in
the quoted references.

The standard procedure used to analyse the linear stability of flows involves the
decomposition of the velocity field and the pressure field into a base component V , P ,
which is a solution of the steady equations of motion, and a small disturbance part
v, p. Substituting into the Navier–Stokes equations, subtracting out the base flow and
neglecting the quadratic terms, one arrives at a linear system of equations describing
the disturbance field:

∂

∂t
v + (V · ∇)v + (v · ∇)V = −∇p+

1

R
∇2v, (1)

∇ · v = 0. (2)

The coefficients of these equations are given by the base flow solution. For the
boundary layer the equations of motion are non-dimensionalized by the free-stream
velocity U∞ and the displacement thickness δ∗; therefore R = U∞δ∗/ν, where ν is
the kinematic viscosity. With the additional assumption that the base flow is parallel,
that is, V = (U, 0, 0), the system of equations (1) and (2) permits the normal modes
solution  u

v
w
p

 =

 û(y)
v̂(y)
ŵ(y)
p̂(y)

 ei(αxx+αzz−βt), (3)

where u, v, w represent the velocity components in the streamwise, normal to the
wall and spanwise directions (x, y, z), respectively, and p is the pressure; β is the
non-dimensional frequency, and αx and αz are, respectively, the non-dimensional
streamwise and spanwise wavenumbers. Both αx and β are in general complex and
account for the growth or decay of the waves in space and time (Gaster 1962, 1965).
The functions û(y), v̂(y), ŵ(y) and p̂(y) are also complex and define the structure of
the mode through the boundary layer.

Substituting (3) together with V = (U, 0, 0) in (1) and (2), the equations of motion
for a three-dimensional disturbance reduce to a pair of ordinary differential equations
(Squire 1933; Mack 1984; Cohen et al. 1991){

d4

dy4
− 2k2 d2

dy2
+ k4 − iRαx

[
(U − c)

(
d2

dy2
− k2

)
− d2U

dy2

]}
v̂ = 0, (4)
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Figure 4. For caption see facing page.

[
d2

dy2
− k2 − iRαx(U − c)

]
η̂ = iαzR

dU

dy
v̂, (5)

with boundary conditions

at y = 0: v̂(y) = 0,
∂

∂y
v̂(y) = 0, η̂(y) = 0,

at y →∞ : v̂(y)→ 0,
∂

∂y
v̂(y)→ 0, η̂(y)→ 0,

 (6)
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Figure 4. Variation of the nonlinear behaviour with the wavepacket phase shown in the frequency
(β)× spanwise wavenumber (αz) plane. Measurements taken at y = 0.6δ∗. The plots show the
relative magnitude. The asterisks indicate the waves satisfying Craik’s resonance condition.

where k2 = α2
x + α2

z , c (= β/αx) is the phase velocity of the mode and η (= ∂w/∂x−
∂u/∂z) is the vertical vorticity.

Equation (4) is the Orr–Sommerfeld equation which, together with the associated
homogeneous boundary conditions, constitutes an eigenvalue problem. Non-trivial
solutions, or modes, have to satisfy a dispersion relation

F(αx, αz, β, R) = 0 (7)
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and each mode is associated with an eigenfunction v̂.
The eigenfunctions for û(y) and ŵ(y) require the solution of equation (5) for the

vertical vorticity together with

û =
i

k2

(
αx

dv̂

dy
− αzη̂

)
, (8)

and

ŵ =
i

k2

(
αz

dv̂

dy
− αxη̂

)
. (9)

These equations have successfully described the evolution of Tollmien–Schlichting
waves of small amplitude in the boundary layer, including the wavepacket, which
was modelled by Gaster (1975) as a superposition of normal modes. When the wave
amplitudes are large the linear model fails and a number of nonlinear theories have
been proposed to extend the model.

If one takes into account the background flow noise, the wave system will inevitably
involve additional bands of waves to those artificially introduced, even when a
monochromatic wave is excited in the boundary layer. Craik developed a theory to
model the interaction of waves when a number of them are present in the flow. These
wave interactions arise from the nonlinear terms of the equations of motion that were
neglected in the linear approximation, but which become increasingly significant as
the wave amplitude increases. A particularly strong interaction occurs if the waves
resonate. Following Craik (1985) suppose that three dominant linear waves have the
form

aj(t)e
i(αxjx+ αz jz− βj t), j = 1, 2, 3 (10)

with aj small. In his analysis Craik considers temporal modes, therefore αx is real. In
the expression β is also real and the nonlinear growth or decay of the wave is given
by a(t). Owing to the quadratic nature of the nonlinear terms, the interaction of these
modes yields O(a2) terms which have the form

ei[±(αxpx+ αzpz− βpt)± (αxqx+ αzqz− βqt)], (11)

for two modes with j = p and j = q.
The wave resonance occurs when any of these quadratic terms has the same

periodicity as that of the third wave mode, that is, when

αx1 ± αx2 ± αx3 = 0, (12)

αz1 ± αz2 ± αz3 = 0, (13)

β1 ± β2 ± β3 = 0, (14)

with corresponding signs being chosen. Craik studied an interaction involving one
two-dimensional wave (αx3, 0, β3) and two oblique waves (αx1, αz1, β1) and (αx2,−αz1, β2)
travelling at opposite angles. To satisfy the resonance condition

αx1 = αx2 = 1
2
αx3 (15)

and

β1 = β2 = 1
2
β3. (16)

Craik suggested that through this resonant interaction a two-dimensional wave could
selectively amplify modes from the background noise and impart a preferred spanwise
periodicity to the flow. The possibility of resonant interaction can be verified from
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the linear solution of the problem. Accordingly, for a given two-dimensional wave,
αx1 and αx2 are taken as 1

2
αx3. Using the dispersion relation one searches for oblique

waves such that β1 = β2 = 1
2
β3. The procedure determines αz1.

Craik obtained a set of equations describing the evolution of the amplitude of the
waves under the influence of such a resonant mechanism:

da1

dt
+ σ1a1 = λ1a

∗
2a3 + O(a3), (17)

da2

dt
+ σ2a2 = λ2a

∗
1a3 + O(a3), (18)

da3

dt
+ σ3a3 = λ3a1a2 + O(a3), (19)

where the λ are evaluated from the linear solution (u, v, w). The asterisk denotes
complex conjugates. It is readily seen that for small amplitudes the equations (17) to
(19) become independent of one another and the solution is the exponential growth
predicted by linear theory. If the nonlinear terms are considered, the growth rates are
modified and become dependent on the amplitude of the other interacting modes.
Experimental confirmation of the phenomenon in the boundary layer was reported
by Corke & Mangano (1989). They artificially excited the flow with three waves
satisfying the resonance criterion and observed an enhancement of the growth rates
of the waves.

A less restrictive resonant mechanism was proposed by Herbert (1983, 1988). He
attributed the failure of the system (4) to (6) to the fact that with finite Tollmien–
Schlichting waves the base flow is no longer steady. It is an almost periodic flow
composed of two parts

V (x, y, t) = V L(y) + AV TS (x, y, t), (20)

where V L represents the boundary layer flow and V TS the Tollmien–Schlichting
wave with amplitude A. Considering a frame of reference moving with the Tollmien–
Schlichting phase velocity cr , the basic flow is independent of time and satisfies

V (x′, y) = V (x′ + λx, y), x′ = x− crt, (21)

where λx is the wavelength of the streamwise periodicity of the base flow.
The linearized disturbance equation (1) with V given by (20) constitutes a system

with x-periodic coefficients. If one considers a locally parallel flow, which also con-
strains A to being locally constant, the normal mode concept can still be applied to
z and t. Therefore, three-dimensional disturbances are written as

v = (x′, y, z, t) = ei(αzz−βt)v̂(x, y). (22)

The resulting equation and the boundary conditions of the problem are homogeneous.
The system permits various classes of solutions, such as the primary (fundamental)
resonance type and the principal parametric (subharmonic) resonance type, which are
analysed through Floquet theory (Drazin & Reid 1981; Grimshaw 1990). The waves
that arise from fundamental resonance have the same periodicity of the base flow (λx).
Those arising from subharmonic resonance have wavelength 2λx. Whereas Craik’s
mechanism only permits amplification of waves of a particular spanwise wavenumber,
for the secondary instability the range of amplified spanwise wavenumber broadens
as the amplitude of the Tollmien–Schlichting wave increases.

However, for a wavepacket composed of many two- and three-dimensional waves,
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Craik’s resonance mechanism given by equations (17)–(19) can also explain the broad
spectrum of the low-frequency oblique modes, provided it is not restricted to a single
pure two-dimensional fundamental mode. Moreover, when the secondary instability
theory is applied to a wavepacket, the physical meaning of the constant amplitude A
of the two-dimensional Tollmien–Schlichting wave, in equation (20), is not obvious.

Craik’s and Herbert’s approaches to the nonlinear problem are conceptually differ-
ent and lead to quite different formulations of the problem. However, for Tollmien–
Schlichting waves of small enough amplitudes the parametric resonance should re-
produce Craik’s criterion for three-wave resonance. In fact, from the Floquet theory
it was found that for small amplitudes the nonlinear regime is dominated by Craik’s
resonance (Herbert 1988). As the amplitudes increase, secondary instability sets in.

4. Analysis of the results
After Gaster successfully modelled the linear wavepacket, a few other works investi-

gated the nonlinear regime of these waves in the boundary layer. The papers by Cohen
et al. (1991), Cohen (1994), Breuer, Cohen & Haritonidis (1997) and Kozelmann &
Fasel (1991) are important examples. In these the appearance of oblique waves was
attributed to some sort of resonance mechanism. In all cases the two-dimensional
Tollmien–Schlichting wave driving the resonance interaction was considered to be
the dominant two-dimensional mode of the wavepacket. Using the Orr–Sommerfeld
equation Cohen et al. calculated the oblique modes satisfying Craik’s criterion for
resonance and found good agreement with their experimental results. Konzelmann &
Fasel interpreted the appearance of oblique waves as secondary instability of the sub-
harmonic resonance type. The apparent disagreement between these studies might be
explained by the amplitudes of the Tollmien–Schlichting waves used in the two cases.
In the experiments by Cohen et al. the fundamental waves were very small which
probably favoured Craik’s mechanism. It is possible that Konzelmann & Fasel used
larger excitation amplitudes in their simulation which would have favoured secondary
instability. There is indeed some indication that the amplitudes in the simulations
were relatively large.

Regarding the observation that the nonlinear interaction is stronger inside the
boundary layer, Cohen et al. offered a plausible explanation. From equation (5) it
is observed that, for oblique waves, the eigenfunctions û and ŵ are dependent not
only on v̂ but also on the vertical vorticity η̂. However, because η̂ decays rapidly
outside the boundary layer, in this region û and ŵ are basically a function of v̂. It
was suggested that the influence of η̂ on the oblique waves might be connected with
the stronger activity observed inside the boundary layer.

Motivated by the results of Cohen et al., the waves satisfying Craik’s criterion
were calculated for the experimental results presented in § 2. The dominant two-
dimensional Tollmien–Schlichting wave was considered to have a non-dimensional
frequency β = 0.1 and the resonant oblique waves were obtained by solving equation
(7) together with the resonant conditions (16).

To map out the dispersion relation it is usually necessary to solve the Orr–
Sommerfeld equation a large number of times. Here a faster way of calculating eigen-
values from a double complex summation developed by Gaster (1978b) was used. The
procedure involved only the inversion of the summation, which was done numerically
through a complex Newton–Raphson root-finding algorithm. This summation was
developed for two-dimensional modes. The eigenvalues of three-dimensional modes
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were found in terms of two-dimensional ones by using the relations

α̃2
x = α2

x + α2
z , (23)

β̃ =
βα̃x

αx
, (24)

R̃ =
Rαx

α̃x
, (25)

where the tildes indicate the two-dimensional modes. These relations were first given
by Squire (1933) for temporal modes and can be readily obtained from equation (4).
For spatial modes the same relations apply, but in this case R̃ has to be complex.

The results are shown by the asterisks in figure 4. It appeared that, at least for some
packets, the spanwise wavenumbers of the waves satisfying the criterion for three-
wave resonance closely coincided with the oblique waves observed in the experiments.
However, the dominant frequency of the oblique waves was not quite half that of
the fundamental, but slightly higher. The secondary instability mechanism can also
amplify waves that do not have exactly the subharmonic frequency, in which case these
waves are called detuned modes. However, the detuned modes must occur in pairs
symmetric with respect to the subharmonic frequency, that is one wave with frequency
1
2
f + ∆f and another with 1

2
f −∆f where f is the fundamental frequency (Kachanov

& Levchenko 1984). This did not seem to be the case in the current experiments.
The apparent disagreement with the theory might be attributed to the fact that in

the boundary layer the Reynolds number changes downstream with the evolution of
the packet. In fact, as the wavepackets travel the fundamental dominant modes shift
towards lower frequencies. When the resonance is triggered the oblique waves start to
amplify, but by the time they are large enough to be measured the fundamental modes
that triggered the process might have decayed considerably. However, this argument
is questionable because the non-dimensional frequencies of the wavepackets did not
change significantly, figure 3, suggesting that there is in fact a real mismatch between
the frequency bands.

One feature of the experimental results still needs to be examined, namely the
dependence of the nonlinear evolution of the wavepackets on the phase composition.
The theories presented did not include phase effects, but extension of the theories
(Monkewitz 1988; Healey 1995) and experiments on plane wavetrains (Hajj, Miksad
& Powers 1993; Kachanov 1994) have shown that the resonant mechanisms are
dependent on the relative phase of the waves involved. For instance, the experiments
mentioned have demonstrated that when a two-dimensional wave is artificially excited
and the subharmonic waves arise from the background noise, the resonant interaction
does not occur uniformly, but displays an intermittent character. The reason for this
may not arise solely through the amplitude modulation, but also from the irregular
phase composition of the background noise. When the subharmonic modes are
artificially excited together with the fundamental ones, variation of the phase relation
advances or delays the onset of the resonant interaction.

Measurements from wavepackets with different phases appeared to support this
scenario. Moreover, the pattern of dependence of the nonlinear evolution on the
phase composition of the packet, as well as the repeatability of the results, indicate
that, if the process is one of resonance, the subharmonic modes did not arise from
the random background noise. Instead, they must have come from a deterministic
source. It appeared that the subharmonic seeds for the resonant interaction were
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the low-frequency modes in the linear wavepacket, which were excited by the point
source.

Despite the reasonably good agreement between the prediction from the resonant
mechanism and the experiments, it is in fact difficult to draw a definitive conclusion
as to whether the process is one of resonance. One of the reasons is that, possibly
because the wavepacket is composed of a relatively broad band of fundamental
frequencies, the oblique waves that appear in the experiments cover a wide range
of spanwise wavenumbers. In view of the uncertainties involved, it is not significant
that the theoretical prediction fall close to this band. The fact that, in the evolution
of the wavepackets, the dominant fundamental frequencies change with downstream
distance contributes to some further blurring of the picture.

5. Further experiments
It appeared that more conclusive results were needed to clarify the issue, and

therefore an experiment was set up to investigate whether subharmonic resonance
could provide a complete explanation of the observations. Time series for exciting the
flow similar to those used in Medeiros & Gaster (1999) were constructed, but with
the Fourier components associated with the subharmonic modes removed. Hereafter
these time series will be referred to as truncated excitation time series as opposed
to the previously used ones, which will be called complete excitation time series.
Experiments were performed to compare the evolution of wavepackets generated
with the two different types of time series. Both resonant mechanisms discussed are
dependent on the initial amplitudes of the subharmonic modes. In Craik’s mechanism
this dependence is expressed by equations (17) to (19). The secondary instability is
governed by a homogeneous equation with homogeneous boundary conditions and
therefore requires a non-zero initial condition for a non-trivial solution. The outcome
of spatial amplification of an initial secondary instability is crucially dependent on
the amplitude of the seed. If the subharmonic modes were seeded by the artificial
excitation in some way, removing the subharmonic seed should affect the nonlinear
evolution. Moreover, if resonance were observed in the experiments with the truncated
excitation time series, the subharmonic mode would have had to arise from the
background noise. Therefore the dependence of the nonlinear evolution on the phase
would not follow a pattern. In fact, in this case the results would not be deterministic.

The experiments presented in the previous section indicated that the fundamental
and the subharmonic spectral band are not entirely separated, but, instead, displayed
an overlap region. The problem is further complicated by the fact that the range of
frequencies composing the bands varied with Reynolds number. Therefore, selection
of the Fourier components to be removed from the excitation time series was a matter
of some debate. The criterion adopted here was to remove a band that contained very
little energy but which still included the dominant modes of the subharmonic band.
The evolution of the positive packet generated from the two different time series were
compared in the Fourier domain, figure 5. First, it was observed that the truncated
time series did not introduce energy in the low-frequency band, whereas the complete
time series did. This is clearly indicated by the spectra at station x = 0.300 m. The
frequency is a parameter that is conserved with streamwise propagation. Therefore,
the verification that the truncated time series did not excite the subharmonic modes
at the centreline ensures that these modes were not excited by the point source
throughout the packet. The evolution in the physical domain is shown in figure 6,
while figure 7 shows in Fourier space a comparison for packets of different phases.
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Figure 5. Fourier domain. Comparison of the evolution of a wavepacket created with the complete
excitation time series (dashed lines) and a wavepacket created with the truncated excitation time
series (solid lines).

In figure 5 it is found that at x = 0.5 m both the truncated and complete excitation
response have virtually identical output. This is also shown by the fact that the
subsequent nonlinear evolution is insensitive to whether the excitation was truncated
or not. This occurs for all the packets of different phase, figure 7. What happens
between x = 0.3 and 0.5 m cannot be explained by a subharmonic mechanism
because this is sensitive to the initial amplitude, that is the seed, of the subharmonic.
Moreover, the subharmonic mechanism is sensitive to phase. If it were responsible for
the output at 0.5 m it would not have produced identical outputs because the seed
of the truncated series would have been non-deterministic. Therefore it is concluded
that some mechanism of production of low-frequency waves occurs between x = 0.3
and 0.5 m that generates the deterministic signal at x = 0.5 m. It is possible that for
the subsequent nonlinear evolution, say, from x = 0.5 m onwards, the mechanism is
of the subharmonic resonance type, but it is not at all clear how the low-frequency
band is generated between x = 0.3 m and 0.5 m.

In summary, the nonlinear regime of both wavepackets and wavetrains features
the appearance of oblique modes with frequency lower than the Tollmien–Schlichting
band. In the case of two-dimensional regular wavetrains, theories have linked this
phenomenon with the amplification of subharmonic modes that are already present in
the flow, either in the background noise or due to artificial excitation. The experiments
discussed in this paper demonstrated that for the wavepackets the oblique low-
frequency waves arose neither from the background nor from the artificial excitation.
It was therefore concluded that the process involved the production of oblique modes.
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Figure 6. Physical domain. Comparison of the evolution of a wavepacket created with the complete
excitation time series (thick dashed lines) and a wavepacket created with the truncated excitation
time series (thin lines).

6. Conclusion and final remarks
Previous studies (Cohen et al. 1991; Konzelmann 1990) have linked the nonlinear

regime of the wavepackets to some type of subharmonic resonance. In the present
work we extend these studies by investigating more fully whether these mechanisms
could explain the experimental observations, in particular the strong influence of the
phase on the nonlinear evolution of the packets.

The current experiment on full three-dimensional packets confirmed the observation
made in Medeiros & Gaster (1999) that the evolution is strongly sensitive to the phase
of the ripples within the packets. For all the packets however, the nonlinear regime
was characterized by the appearance of low-frequency oblique modes of similar
streamwise and spanwise wavenumbers. From these results it is unclear whether these
modes are subharmonics of the fundamental waves. The system is composed of a
large number of waves and the non-parallel effects further blur the picture.

The repeatability of the results for the different packets and the consistent pattern
of dependence on the phase made it clear that the oblique modes could not have
arisen from the random background noise present in the tunnel. It appeared that these
oblique modes could only have been seeded by the deterministic, artificial excitations.
New experiments were then specially designed to verify this possibility. Excitations
were used that did not contain components in the range of frequency of the dominant
oblique modes. The results showed, however, that the phenomenon was not affected
by the low-frequency oblique modes excited at the source. Therefore the deterministic
oblique modes must have come from some as yet unidentified mechanism of wave
production.

The production of modes is generally associated with harmonics of the fundamental
or mean flow distortion, which arise from self-interaction of modes via the Reynolds
stress terms. But it is important to note that in a system composed of a large number
of modes, like the wavepackets, the Reynolds stresses also cover a wide range of the
spectrum and production of modes of virtually all other frequencies becomes possible.

Finally, it is important to emphasize that the results presented here did not rule out
the possibility of subharmonic resonance in the system. They could only show that
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Figure 7. Fourier domain. Comparison of the nonlinear wavepackets created with the complete
excitation time series (thick dashed lines) and the nonlinear wavepackets created with the truncated
excitation time series (thin lines) for different wavepacket phases.

subharmonic resonance alone cannot explain the observations. In fact, it is possible
that the nonlinearly produced waves in turn resonate with the fundamental modes.
Since the resonant mechanisms are sensitive to the relative phase of the resonant
modes, this might well explain the influence of the phase on the nonlinear behaviour
of the packets. This conjecture is however as yet unproven.
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ORS award from UK.

REFERENCES

Breuer, K. S., Cohen, J. & Haritonidis, J. H. 1997 The late stages of transition induced by a
low-amplitude wavepacket in a laminar boundary layer. J. Fluid Mech. 340, 395–411.

Cohen, J. 1994 The initial evolution of a wave packet in a boundary layer. Phys. Fluids 6, 1133–1143.

Cohen, J., Breuer, K. S. & Haritonidis, J. H. 1991 On the evolution of a wave packet in a laminar
boundary layer. J. Fluid Mech. 225, 575–606.

Corke, T. C. & Mangano, R. A. 1989 Resonant growth of three-dimensional modes in transitioning
Blasius boundary layers. J. Fluid Mech. 209, 93–150.

Craik, A. D. D. 1971 Nonlinear resonant instability in a boundary layer. J. Fluid Mech. 50, 393–413.

Craik, A. D. D. 1985 Wave Interaction and Fluid Flows. Cambridge University Press.

Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.



318 M. A. F. Medeiros and M. Gaster

Gaster, M. 1962 A note on the relation between temporally-increasing and spatially-increasing
disturbances in hydrodynamic instability. J. Fluid Mech. 14, 222–224.

Gaster, M. 1965 On the generation of spatially growing waves in a boundary layer. J. Fluid Mech.
22, 433–441.

Gaster, M. 1975 A theoretical model of a wave packet in the boundary layer on a flat plate. Proc.
R. Soc. Lond. A 347, 271–289.

Gaster, M. 1978a The physical process causing breakdown to turbulence. In 12th Naval Hydrody-
namics Symp., Washington.

Gaster, M. 1978b Series representation of the eigenvalues of the Orr–Sommerfeld equation. J.
Comput. Phys. 29, 147–162.

Gaster, M. & Grant, I. 1975 An experimental investigation of the formation and development of
a wavepacket in a laminar boundary layer. Proc. R. Soc. Lond. A 347, 253–269.

Grimshaw, R. 1990 Nonlinear Ordinary Differential Equations. Blackwell Scientific Publications.

Hajj, M. R., Miksad, R. W. & Powers, E. J. 1993 Fundamental-subharmonic interaction: effect of
phase relation. J. Fluid Mech. 256, 403–426.

Healey, J. J. 1995 A new boundary resonance enhanced by wave modulation: theory and experiment.
J. Fluid Mech. 304, 231–262.

Herbert, T. 1983 Secondary instability of plane channel flow to subharmonic three-dimensional
disturbances. Phys. Fluids 26, 871–874.

Herbert, T. 1988 Secondary instability of boundary layers. Ann. Rev. Fluid Mech. 20, 487–526.

Kachanov, Y. S. 1994 Physical mechanisms of laminar boundary layer transition. Ann. Rev. Fluid
Mech. 26, 411–482.

Kachanov, Y. S. & Levchenko, V. Y. 1984 The resonant interaction of disturbances at laminar-
turbulent transition in a boundary layer. J. Fluid Mech. 138, 209–247.

Konzelmann, U. 1990 Numerische Untersuchungen zur räumlichen Entwicklung dreidimensionaler
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